Газы: различия между версиями

Материал из Space Station 14 Вики
Нет описания правки
м Сокращение воды в тексте, без потери сути (возможно)
Строка 3: Строка 3:
{{quote|Что такое фрезон и с чем его дышат?}}
{{quote|Что такое фрезон и с чем его дышат?}}


'''Газ''' это особый тип сред, заполняющих все пространства, участвующий в тепловом обмене и химических реакциях с окружением. Каждый газ в игре описывается своим набором параметров и свойствами.
'''Газ''' — это особый тип сред, заполняющих все пространства, участвующий в тепловом обмене и химических реакциях с окружением. Каждый газ в игре описывается своим набором параметров и свойствами.


<h2 style="border-bottom:2px solid {{цвет|azure|150}}>Газы</h2>
<h2 style="border-bottom:2px solid {{цвет|azure|150}}>Газы</h2>
Строка 143: Строка 143:


=== Реакция горения плазмы ===
=== Реакция горения плазмы ===
Тритий — ценнейший газ, образующийся при сгорании плазмы в условиях перенасыщения кислородом. Он находит основное применение в производстве фрезона и создании бомб, что делает его стратегическим ресурсом для ученых и не только учёных. Контроль уровня кислорода в атмосфере критичен для эффективного синтеза трития, поскольку слишком низкая или высокая концентрация может существенно снизить выход реакции.
Тритий — стратегический газ, образующийся при сгорании плазмы в условиях перенасыщения кислородом. Он используется для производства фрезона и бомб. Контроль уровня кислорода в камере критичен: его дефицит или избыток сильно снижают выход.


Для успешного получения трития недостаточно просто сжечь плазму в кислороде — необходимо создать условия перенасыщения. Это означает, что соотношение кислорода к плазме должно превышать определённый порог, после чего эффективность реакции начинает зависеть от степени перенасыщения.
Для синтеза трития нужно перенасыщение — отношение моль кислорода к молю плазмы выше порога. Перенасыщение рассчитывается так:
 
Перенасыщение вычисляется по следующей формуле:


{{EF||<math>(\frac{\text{моль кислорода}}{\text{моль плазмы}} - 32) \div 64</math>|style=twolines|ref=Формула перенасыщения|center=y
{{EF||<math>(\frac{\text{моль кислорода}}{\text{моль плазмы}} - 32) \div 64</math>|style=twolines|ref=Формула перенасыщения|center=y
|explanation=
|explanation=
где:
где:
* '''Порог перенасыщения''' — 96%.
* '''Порог перенасыщения''' — 96.
* '''32''' — нижний порог перенасыщения (т.е. 96% ÷ 3).
* '''32''' — нижний порог перенасыщения (96 ÷ 3).
* '''64''' — разница между верхним и нижним порогом перенасыщения.
* '''64''' — разница между верхним и нижним порогом перенасыщения.
}}
}}


Это означает, что перенасыщение достигает максимума при концентрации плазмы около 1,538 % (приблизительно 20/13).
Максимальный выход трития (100 %) достигается при ~1,538 % плазмы (≈20/13). При >1,538 % плазмы начинает образовываться углекислый газ, при >3 % — только CO₂.


Перенасыщение в реакции горения плазмы напрямую влияет на эффективность производства трития: если концентрация плазмы близка к 1,538 %, выход трития достигает 100 %. При более высокой концентрации плазмы реакция перерастает в образование углекислого газа, а при концентрации плазмы выше 3 % продуктом реакции становится исключительно углекислый газ.
Ключевой фактор — температура:
* > 1643,15 K (1370 °C) — реакция максимально быстрая.
* < 373,15 K (100 °C) — горение останавливается.


Тем не менее, перенасыщение само по себе недостаточно — ключевым фактором является температура. Чем выше температура среды, тем быстрее протекает реакция, и тем больше трития образуется. В идеальных условиях, при высоких температурах и достаточном перенасыщении, можно достичь максимального выхода трития.
[[Файл:TemperatureScale.png|мини|справа|Зависимость выхода трития от температуры]]


* При температуре выше 1643,15 K (1370 °C) реакция достигает максимальной интенсивности.
Смесь плазмы и кислорода сначала заливают 1:99, затем в процессе поддерживают 54:46. Горение идёт в герметичной камере, где давление растёт; избыточное тепло отводят фрезоном в замкнутом контуре через внутреннюю камеру нагрева и внешние радиаторы (включаются при температуре > 1643 K). Отработанные газы (пар и углекислый газ) удаляются скрубберами. В открытом режиме (с гермозатвором) кислород не накапливается, что упрощает охлаждение инжектора; при закрытом — уровень кислорода регулируют подачей смеси.
* При температуре ниже 373,15 K (100 °C) горение прекращается.


[[Файл:TemperatureScale .png|мини|справа|Зависимость выхода трития от температуры]]
Собранный скрубберами тритий фильтруют и отправляют в хранилище или на производство фрезона.
 
Таким образом, для достижения максимального выхода трития атмосферный техник должен создать идеальные условия для реакции: довести атмосферу камеры сгорания до перенасыщения кислородом, а затем нагреть смесь до минимальной температуры. Чем выше температура, тем быстрее процесс получения трития.


[[Файл:PlasmaFireReaction.jpg|class=noSprite|центр|альт=Тритий|Установка для создания трития]]
[[Файл:PlasmaFireReaction.jpg|class=noSprite|центр|альт=Тритий|Установка для создания трития]]
Смесь плазмы и кислорода, которая предварительно подготавливается в смесителе поступает в камеру сгорания. Важно поддерживать правильное соотношение газов, поэтому перед началом работы камеру заполняют смесью 1:99 плазмы и кислорода, а затем, во время работы, поддерживают соотношение 54:46. Сжигание происходит в герметичной камере, где газ нагревается, увеличивая давление. Чтобы предотвратить чрезмерное увеличение давления в камере, система использует радиаторы, охлаждающие газ выходящий из инжектора. Для этого в отдельный замкнутый контур закачивается фрезон, который сначала проходит через камеру, поглощая тепло, а затем охлаждается во внешних радиаторах. Запуск охлаждения осуществляется только при перегреве, чтобы температура держалась на уровне 1643K. Отработанные газы, включая водяной пар и углекислый газ, необходимо регулярно удалять из камеры через систему скрубберов, чтобы избежать неконтролируемого роста давления. Важное отличие от открытых камер заключается в том, что кислород здесь не выбрасывается в космос, а накапливается, поэтому его уровень необходимо контролировать. Если кислорода слишком много, его поступление в смесь снижают, если слишком мало — увеличивают. Для получения начального количества фрезона нужно использовать камеру в открытом виде (для этого она оборудована гермозатвором). Дополнительную подсистему охлаждения инжектора можно не строить и использовать камеру в открытом виде, если эффективность потребления плазмы не важна.
Тритий, пойманный скрубберами, затем фильтруется и может быть направлен в хранилище или использован для дальнейших реакций.


=== Производство фрезона ===
=== Производство фрезона ===
Фрезон — это редчайший и один из самых дорогих газов на станции, ценимый за свою уникальную способность охлаждать окружающую среду до экстремальных −250 °C. Однако процесс его добычи крайне сложен: неправильная настройка системы может привести к уничтожению трития. Ошибка в процессе может обернуться большими потерями, поскольку каждая молекула фрезона буквально на вес золота (1 моль фрезона — 1 кредит).
Фрезон — редкий газ для охлаждения до −250 °C; 1 моль фрезона = 1 кредит. Реакция трития и кислорода с азотом-катализатором даёт фрезон, но избыточный азот замедляет процесс и может «заморозить» установку.
 
Процесс производства фрезона основан на реакции кислорода и трития с участием азота в качестве катализатора. Однако ключевым фактором, влияющим на выход фрезона, является температура: чем она выше, тем эффективнее идет реакция. Избыточный азот может замедлить процесс и привести к неконтролируемому охлаждению.


Для производства фрезона необходимо соблюсти следующие пропорции: из 1 моля трития и 8 молей кислорода получается соответствующее количество фрезона, умноженное на эффективность реакции. Каждый тик производства приводит к получению 1/50 от этого количества.
Пропорции: 1 моль трития + 8 моль кислорода → фрезон × эффективность; каждый тик даёт 1/50 от расчётного выхода.


Эффективность реакции зависит от температуры:
Температурная зависимость:
* При −200 °C процесс идет максимально эффективно.
* −200 °C — процесс идет максимально эффективно.
* При температуре ниже −200 °C эффективность начинает снижаться.
* Ниже −200 °C эффективность начинает снижаться.


[[Файл:FrezonProductionReaction.png|мини|справа|Зависимость выхода фрезона от температуры]]
[[Файл:FrezonProductionReaction.png|мини|справа|Зависимость выхода фрезона от температуры]]


Азот играет двойную роль в процессе производства фрезона: он катализирует реакцию, но часть азота остаётся в системе, что может оказать влияние на эффективность процесса. Если температура слишком низкая (около −250 °C), азот начинает взаимодействовать с фрезоном, что дополнительно охлаждает систему и замедляет процесс. Поэтому важно поддерживать правильную концентрацию азота в системе. Если его слишком много, выход фрезона будет снижаться, и в конечном итоге установка может «замерзнуть».
Азот катализирует, но отложения азота накапливаются; при ~−250 °C азот взаимодействует с фрезоном, дополнительно охлаждая систему. Избыток азота уничтожают.


[[Файл:FrezonProduction.png|class=noSprite|центр|альт=фрезон|Установка для производства фрезона]]
[[Файл:FrezonProduction.png|class=noSprite|центр|альт=Фрезон|Установка для производства фрезона]]


Тритий поступает в установку прямо из камеры сгорания (зелёная стрелка) или из канистры. Небольшое количество азота можно добавить в установку из газодобытчика или закачать в охладитель перед постройкой (у охладителя есть небольшое внутреннее хранилище). Для стабильной выработки реагенты должны находиться в равных пропорциях, поэтому в установку нужно закачивать кислород по мере необходимости (голубая стрелка). Азот же в свою очередь наоборот будет производиться в процессе реакции и его нужно периодически уничтожать (красная стрелка). Газ в установке должен прокачиваться через несколько фильтров: один фильтрует азот, он не должен блокировать прохождение газа, потому что фильтр не будет включаться часто, другие два постоянно прокачивают смесь через себя и фильтруют холодный оксид азота (фиолетовая стрелка) и желанный фрезон (синяя стрелка).
Тритий поступает из камеры сгорания (зелёная стрелка) или канистры. Кислород (голубая стрелка) подаётся по мере надобности, азот (красная стрелка) удаляется через фильтр азота и два фильтра для холодных оксидов азота и фрезона (фиолетовая и синяя стрелки).


=== Как получить максимум фрезона? ===
=== Как получить максимум фрезона? ===
* Поддерживайте температуру около −200 °C, чтобы предотвратить переохлаждение установки.
* Поддерживайте −200 °C, чтобы не допустить переохлаждения.
* Контролируйте концентрацию азота: он необходим для реакции, но его избыток может вызвать проблемы при температуре −250 °C. Уничтожайте излишки азота.
* Уничтожайте избыток азота, сохраняя каталитическую норму. Его избыток может вызвать проблемы при температуре −250 °C.
* Используйте уже нагретый кислород из камеры сгорания: он быстрее нагреет установку, чем кислород из газодобытчика.
* Используйте уже нагретый кислород из камеры сгорания. Он быстрее нагреет установку, чем кислород из газодобытчика.


<h2 style="border-bottom:2px solid {{цвет|azure|150}}>Настройка атмоса</h2>
<h2 style="border-bottom:2px solid {{цвет|azure|150}}>Настройка атмоса</h2>


Атмосферика, иногда называемая Атмосией, — это место, где находится большая часть оборудования для обработки воздуха. Каждая станция имеет различную схему этого отдела. Опытные атмосферные специалисты запоминают атмосферные макеты, потому как частые бесполезные инженерные изменения на станциях при реконструкции могут затруднить работу.
Атмос (атмосия) — отдел с оборудованием для работы с газами. Макет уникален для каждой станции; специалисты запоминают схемы, чтобы избежать лишних правок.


=== Дистрибутив ===
=== Дистрибутив ===
Главный воздухораспределительный контур станции, также известный как «дистро», снабжает вентиляционные отверстия, которые поставляют воздух в станцию. Обычно он окрашен в тёмно-синий цвет, чтобы его было легко идентифицировать.
Главный контур («дистро») подаёт смесь во все вентиляционные отверстия. Трубопровод обычно окрашен в тёмно-синий.


=== Отходы ===
=== Отходы ===
Отходы обычно отмечены красными трубами и отвечают за удаление отработанного газа вокруг станции через скрубберы. Эти трубы начинаются и заканчиваются в атмосе и огибают всю станцию. Основное назначение системы отходов — ​​обеспечить удаление вредных газов из атмосферы станции. Скрубберы удалят газ из коридоров и вернут его в атмос, где он будет разделен газовыми фильтрами на различные камеры хранения. Вредные газы будут оседать в предназначенных для них камерах, а пригодный для дыхания воздух снова вернется в дистро и на станцию, чтобы продолжить цикл.
Красные трубы собирают отработанный газ по всей станции и направляют его в скрубберы. Скрубберы очищают смесь, возвращая пригодный воздух в дистро, а вредные компоненты хранят в отдельных ёмкостях.


=== Камера смешивания ===
=== Камера смешивания ===
Камера смешивания представляет собой пустую зону хранения с собственной отдельной петлёй труб и насосов в атмосфере. Смесительная петля обычно отмечена коричневыми трубами, а камера хранения обычно находится рядом с внешним корпусом, отделённая от станции усиленными стенами и окнами. Рядом будет аварийная кнопка, чтобы разгерметизировать камеру, если вам нужно сбросить смесь в случае аварии или вы просто хотите опустошить камеру для новой смеси. Камера смешивания предназначена для экспериментов с различными смесями, соотношениями, температурами и давлениями при комбинировании газов.
Изолированная петля с коричневыми трубами и накопителем под внешней обшивкой. Предназначена для экспериментов с соотношением газов, температурой и давлением. Имеется аварийный сброс через гермозатвор для быстрой очистки.
{|class="wikitable" style="width:100%"
{|class="wikitable" style="width:100%"
|-
|-

Версия от 16:52, 21 мая 2025


“ Что такое фрезон и с чем его дышат? ”

Газ — это особый тип сред, заполняющих все пространства, участвующий в тепловом обмене и химических реакциях с окружением. Каждый газ в игре описывается своим набором параметров и свойствами.

Газы

Газ Описание Удельная теплоемкость Дж/(кг·К) Молярная масса (г/моль) Цена за Моль (Кредиты) Конденсируется

Кислород
Бесцветный газ без запаха. Люди должны дышать, чтобы оставаться в живых. Окислитель в большинстве реакций горения. 20 32 0 Кислород

Азот
Бесцветный газ без запаха. Сам по себе безопасен при вдыхании человеком. Необходим бля дыхания слаймолюдам и воксам. 30 28 0 Азот

Углекислый газ
Бесцветный газ без запаха. Выдыхается существами, дышащими кислородом. При высокой концентрации он становится токсичным для всех кроме дион. 30 44 0 Диоксид углерода

Оксид азота
Бесцветный газ без запаха. Также известный как «веселящий» или «сонный» газ, он действует как успокаивающее средство на всех, кроме слизней, и токсичен в очень высоких концентрациях. Это вещество выдыхается слизнями. 40 44 1 -






Плазма
Розово-фиолетовый, легковоспламеняющийся, ядовитый газ. В присутствии кислорода загорается при воспламенители или температуре выше 100 °С. Этот газ жизненно важен для производственной и научной деятельности на борту станции. 200 120 0 Плазма






Водяной пар
Выглядит как белое облако, вода в газообразном состоянии. Не конденсируется в жидкую воду. Вреден для слаймолюдов. 40 18 0 Вода






Миазмы (Аммиак)
Тёмно-фиолетовый, зловонный газ. Ядовит и вреден в достаточно больших концентрациях. Побочный продукт неприятных биологических процессов, например, гниения тел. Может выделятся крысиным королём. 20 44 0.15 Аммиак






Тритий
Зеленый, легковоспламеняющийся и радиоактивный при вдыхании газ. Горит в присутствии кислорода с выделением огромного (284 кДж/моль) количества тепла. Получается как побочный продукт при горении плазмы. 10 6 2.5 Тритий






Фрезон
Синий газ, при вдыхании вызывает галлюцинации и рак. Используется в качестве промышленного хладагента (при реакции с азотом поглощает 600 кДж/моль). Некоторые используют его в рекреационных целях из-за его эйфорического эффекта, прежде чем их легкие замерзнут. Самый дорогой и следовательно эффективный для продажи в карго газ. 600 50 1 Фрезон

Реакции газов

Название Вещества вступавшие в реакцию Продукты Минимальная температура Максимальная температура
В цельсиях В кельвинах В цельсиях В кельвинах
Горение плазмы Плазма + Кислород Углекислый газ + Малое количество трития + Нагрев атмосферы 100 373.149 - -
Горение трития Тритий + Кислород Углекислый газ + Водяной пар + Нагрев атмосферы 100 373.149 - -
Производство фрезона Азот + Кислород + Тритий Фрезон + Азот - - -200 73.15
Охлаждение фрезона Фрезон + Азот Охлаждение атмосферы + Оксид азота -250 23.15 - -
Разложение оксида азота Оксид азота Азот + Кислород 576.85 850 - -
Реакция миазм с кислородом Миазмы + Кислород Оксид азота + водяной пар 50 323.149 - -

Реакция горения плазмы

Тритий — стратегический газ, образующийся при сгорании плазмы в условиях перенасыщения кислородом. Он используется для производства фрезона и бомб. Контроль уровня кислорода в камере критичен: его дефицит или избыток сильно снижают выход.

Для синтеза трития нужно перенасыщение — отношение моль кислорода к молю плазмы выше порога. Перенасыщение рассчитывается так:

Максимальный выход трития (100 %) достигается при ~1,538 % плазмы (≈20/13). При >1,538 % плазмы начинает образовываться углекислый газ, при >3 % — только CO₂.

Ключевой фактор — температура:

  • > 1643,15 K (1370 °C) — реакция максимально быстрая.
  • < 373,15 K (100 °C) — горение останавливается.
Зависимость выхода трития от температуры

Смесь плазмы и кислорода сначала заливают 1:99, затем в процессе поддерживают 54:46. Горение идёт в герметичной камере, где давление растёт; избыточное тепло отводят фрезоном в замкнутом контуре через внутреннюю камеру нагрева и внешние радиаторы (включаются при температуре > 1643 K). Отработанные газы (пар и углекислый газ) удаляются скрубберами. В открытом режиме (с гермозатвором) кислород не накапливается, что упрощает охлаждение инжектора; при закрытом — уровень кислорода регулируют подачей смеси.

Собранный скрубберами тритий фильтруют и отправляют в хранилище или на производство фрезона.

Тритий
Установка для создания трития

Производство фрезона

Фрезон — редкий газ для охлаждения до −250 °C; 1 моль фрезона = 1 кредит. Реакция трития и кислорода с азотом-катализатором даёт фрезон, но избыточный азот замедляет процесс и может «заморозить» установку.

Пропорции: 1 моль трития + 8 моль кислорода → фрезон × эффективность; каждый тик даёт 1/50 от расчётного выхода.

Температурная зависимость:

  • −200 °C — процесс идет максимально эффективно.
  • Ниже −200 °C — эффективность начинает снижаться.
Зависимость выхода фрезона от температуры

Азот катализирует, но отложения азота накапливаются; при ~−250 °C азот взаимодействует с фрезоном, дополнительно охлаждая систему. Избыток азота уничтожают.

Фрезон
Установка для производства фрезона

Тритий поступает из камеры сгорания (зелёная стрелка) или канистры. Кислород (голубая стрелка) подаётся по мере надобности, азот (красная стрелка) удаляется через фильтр азота и два фильтра для холодных оксидов азота и фрезона (фиолетовая и синяя стрелки).

Как получить максимум фрезона?

  • Поддерживайте −200 °C, чтобы не допустить переохлаждения.
  • Уничтожайте избыток азота, сохраняя каталитическую норму. Его избыток может вызвать проблемы при температуре −250 °C.
  • Используйте уже нагретый кислород из камеры сгорания. Он быстрее нагреет установку, чем кислород из газодобытчика.

Настройка атмоса

Атмос (атмосия) — отдел с оборудованием для работы с газами. Макет уникален для каждой станции; специалисты запоминают схемы, чтобы избежать лишних правок.

Дистрибутив

Главный контур («дистро») подаёт смесь во все вентиляционные отверстия. Трубопровод обычно окрашен в тёмно-синий.

Отходы

Красные трубы собирают отработанный газ по всей станции и направляют его в скрубберы. Скрубберы очищают смесь, возвращая пригодный воздух в дистро, а вредные компоненты хранят в отдельных ёмкостях.

Камера смешивания

Изолированная петля с коричневыми трубами и накопителем под внешней обшивкой. Предназначена для экспериментов с соотношением газов, температурой и давлением. Имеется аварийный сброс через гермозатвор для быстрой очистки.

Макет атмсосии с описанием и способом настройки
Описание к макету:
  1. Камера хранения кислорода с газодобытчиком кислорода.
  2. Камера хранения азота с газодобытчиком азота.
  3. Насос ведущий кислород к миксеру.
  4. Насос ведущий азот к миксеру.
  5. Смеситель для смешивания азота и кислорода в подходящем для станции соотношении.
  6. Насос для перемещения выхода миксера на основной канал дистрибутива станции.
  7. Насос для передвижения газа со станции в фильтры.
  8. Клапан для сброса газов из трубы отходов в космос.
  9. Фильтры для разделения разных газов с трубы отходов.
  10. Камеры хранения с газодобытчиками.
  11. Смесители для смешивания реактивов для камеры смешивания.
  12. Инжектор впуска газа в камеру смешивания.
  13. Пассивная вентиляция забирающая газ из камеры смешивания.
  14. Гермодвери для сброса газа в космос.
  15. Кнопка активирующая гермодвери.
  16. Насос для закачки газа в камеру смешивания.
  17. Насос для откачки газа из камеры смешивания.
  18. Система регулирования температуры газа из камеры смешивания.
  19. Насосы для закачки газа в канистры.
  20. Порты для подключения канистр.
  21. Порты для подключения переносных скрубберов.
Для настройки требуется:
  • Включить насос ведущий из камеры хранения азота (4).
  • Включить насос ведущий из камеры хранения кислорода (3).
  • Включить газосмеситель с подсоединёнными трубами с кислородом и азотом (5). Газосеситель должен быть настроен так что бы смешивать 80 % азота и 20 % кислорода.
  • Включить насос подающий газ после газосмесителя в дистрибутив (6).
  • Включить насос откачивающий воздух из трубы отходов (7).
  • Включить газовые фильтры ведущие газ из трубы отходов в камеры хранения (9). Не рекомендуется ставить настройки на фильтры для кислорода и азота во избежание попадания переохлаждённого/перегретого газа в камеры хранения и в последствии в атмосферу станции.
  • Убедится что в труба отходов сбрасывает оставшиеся в ней после фильтрации газы в космос.
Настройка камеры смешивания (для производства трития):
  • Установите скруббер вместо пассивной вентиляции (13). Не забудте подключить его к воздушной сигнализации.
  • Включите газосмесители (11) так что бы в трубе получилась смесь 1 % плазмы 99 % кислорода. Получаем горючую смесь для производства трития.
  • Включите насосы подающие плазму и кислород в газосмесители.
  • Включите насосы подающие горючую смесь в камеру смешивания
  • Подожгите смесь в камере смешивания любым доступным способом.
  • Настоите скруббер в интерфейсе воздушной сигнализации так что бы откачиваля только тритий.
  • Включите насосы подающие газ из камеры смешивания (17)
  • Включите систему охлаждения трития. (18)
  • Включите насосы подающие газ в канистры (19)
  • Подключите канистру к порту (20)