Обсуждение участника:CLI563
- Страница проходит весь ад бюрократии и правок и находится в шаге от выпуска в релиз.
- Вся информация в данной статье не входит в канон и может быть полностью проигнорирована.
- Запросил: CL_w
Газы
Тут описаны свойства газов которые есть в SS14 на данный момент
| Газ | Описание | Удельная теплоемкость Дж/(кг·К) | Молярная масса (г/моль) | Цена за Моль (Кредиты) |
|---|---|---|---|---|
![]() Кислород |
Бесцветный газ без запаха. Люди должны дышать, чтобы оставаться в живых. Окислитель в большинстве реакций горения. | 20 | 32 | 0 |
![]() Азот |
Бесцветный газ без запаха. Сам по себе безопасен при вдыхании человеком. Необходим бля дыхания слаймолюдам и воксам. | 30 | 28 | 0 |
![]() Углекислый газ |
Бесцветный газ без запаха. Выдыхается существами, дышащими кислородом. При высокой концентрации он становится токсичным для всех кроме дион. | 30 | 44 | 0 |
![]() Оксид азота |
Бесцветный газ без запаха. Также известный как «веселящий» или «сонный» газ, он действует как успокаивающее средство на всех, кроме слизней, и токсичен в очень высоких концентрациях. Это вещество выдыхается слизнями. | 40 | 44 | 1 |
![]() Плазма |
Розово-фиолетовый, легковоспламеняющийся, ядовитый газ. В присутствии кислорода загорается при воспламенители или температуре выше 100 °С. Этот газ жизненно важен для производственной и научной деятельности на борту станции. | 200 | 120 | 0 |
![]() Водяной пар |
Выглядит как белое облако, вода в газообразном состоянии. Не конденсируется в жидкую воду. Вреден для слаймолюдов. | 40 | 18 | 0 |
![]() Миазмы (Аммиак) |
Тёмно-фиолетовый, зловонный газ. Ядовит и вреден в достаточно больших концентрациях. Побочный продукт неприятных биологических процессов, например, гниения тел. Может выделятся крысиным королём. | 20 | 44 | 0.15 |
![]() Тритий |
Зеленый, легковоспламеняющийся и радиоактивный при вдыхании газ. Горит в присутствии кислорода с выделением огромного (284 кДж/моль) количества тепла. Получается как побочный продукт при горении плазмы. | 10 | 6 | 2.5 |
![]() Фрезон |
Синий газ, при вдыхании вызывает галлюцинации и рак. Используется в качестве промышленного хладагента (при реакции с азотом поглощает 600 кДж/моль). Некоторые используют его в рекреационных целях из-за его эйфорического эффекта, прежде чем их легкие замерзнут. Самый дорогой и следовательно эффективный для продажи в карго газ. | 600 | 50 | 1 |
Реакции газов
| Название | Вещества вступавшие в реакцию | Продукты | Минимальная температура | Максимальная температура | ||
|---|---|---|---|---|---|---|
| В цельсиях | В кельвинах | В цельсиях | В кельвинах | |||
| Горение плазмы | Плазма + Кислород | Углекислый газ + Малое количество трития + Нагрев атмосферы | 100 | 373.149 | - | - |
| Горение трития | Тритий + Кислород | Углекислый газ + Водяной пар + Нагрев атмосферы | 100 | 373.149 | - | - |
| Производство фрезона | Азот + Кислород + Тритий | Фрезон + Азот | - | - | -200 | 73.15 |
| Охлаждение фрезона | Фрезон + Азот | Охлаждение атмосферы + Диоксид азота | -250 | 23.15 | - | - |
| Разложение оксида азота | Оксид азота | Азот + Кислород | 576.85 | 850 | - | - |
| Реакция миазм с кислородом | Миазмы + Кислород | Оксид азота + водяной пар | 50 | 323.149 | - | - |
Реакция горения плазмы
Тритий — ценнейший газ, образующийся при сгорании плазмы в условиях перенасыщения кислородом. Он находит основное применение в производстве фрезона и создании бомб, что делает его стратегическим ресурсом для ученых и не только учёных. Контроль уровня кислорода в атмосфере критичен для эффективного синтеза трития, поскольку слишком низкая или высокая концентрация может существенно снизить выход реакции.
Для успешного получения трития недостаточно просто сжечь плазму в кислороде — необходимо создать условия перенасыщения. Это означает, что соотношение кислорода к плазме должно превышать определённый порог, после чего эффективность реакции начинает зависеть от степени перенасыщения.
Перенасыщение вычисляется по следующей формуле:
Это означает, что перенасыщение достигает максимума при концентрации плазмы около 1,538% (приблизительно 20/13).
Перенасыщение в реакции горения плазмы напрямую влияет на эффективность производства трития: если концентрация плазмы близка к 1,538%, выход трития достигает 100%. При более высокой концентрации плазмы реакция перерастает в образование углекислого газа, а при концентрации плазмы выше 3% продуктом реакции становится исключительно углекислый газ.
Тем не менее, перенасыщение само по себе недостаточно — ключевым фактором является температура. Чем выше температура среды, тем быстрее протекает реакция, и тем больше трития образуется. В идеальных условиях, при высоких температурах и достаточном перенасыщении, можно достичь максимального выхода трития.
- При температуре выше 1643,15 K (1370°C) реакция достигает максимальной интенсивности.
- При температуре ниже 373,15 K (100°C) горение прекращается.

Таким образом, для достижения максимального выхода трития атмосферный техник должен создать идеальные условия для реакции: довести атмосферу камеры сгорания до перенасыщения кислородом, а затем нагреть смесь до минимальной температуры. Чем выше температура, тем быстрее процесс получения трития.
Производство фрезона
Фрезон — это редчайший и один из самых дорогих газов на станции, ценимый за свою уникальную способность охлаждать окружающую среду до экстремальных -250 °C. Однако процесс его добычи крайне сложен: неправильная настройка системы может привести к уничтожению трития. Ошибка в процессе может обернуться большими потерями, поскольку каждая молекула фрезона буквально на вес золота (1 моль фрезона — 1 кредит).
Процесс производства фрезона основан на реакции кислорода и трития с участием азота в качестве катализатора. Однако ключевым фактором, влияющим на выход фрезона, является температура: чем она выше, тем эффективнее идет реакция. Избыточный азот может замедлить процесс и привести к неконтролируемому охлаждению.
Для производства фрезона необходимо соблюсти следующие пропорции: из 1 моля трития и 8 молей кислорода получается соответствующее количество фрезона, умноженное на эффективность реакции. Каждый тик производства приводит к получению 1/50 от этого количества.
Эффективность реакции зависит от температуры:
- При -200 °C процесс идет максимально эффективно.
- При температуре ниже -200 °C эффективность начинает снижаться.
Азот играет двойную роль в процессе производства фрезона: он катализирует реакцию, но часть азота остаётся в системе, что может оказать влияние на эффективность процесса. Если температура слишком низкая (около -250 °C), азот начинает взаимодействовать с фрезоном, что дополнительно охлаждает систему и замедляет процесс. Поэтому важно поддерживать правильную концентрацию азота в системе. Если его слишком много, выход фрезона будет снижаться, и в конечном итоге установка может "замерзнуть".

Как получить максимум фрезона?
- Поддерживайте температуру около -200 °C, чтобы предотвратить переохлаждение установки.
- Контролируйте концентрацию азота: он необходим для реакции, но его избыток может вызвать проблемы при температуре -250 °C. Уничтожайте излишки азота.
- Используйте уже нагретый кислород из камеры сгорания: он быстрее нагреет установку, чем кислород из газодобытчика.
Настройка атмоса
Атмосферика, иногда называемая Атмосией, - это место, где находится большая часть оборудования для обработки воздуха. Каждая станция имеет различную схему этого отдела. Опытные атмосферные специалисты запоминают атмосферные макеты, потому как частые бесполезные инженерные изменения на станциях при реконструкции могут затруднить работу.
Дистрибутив
Главный воздухораспределительный контур станции, также известный как «дистро», снабжает вентиляционные отверстия, которые поставляют воздух в станцию. Обычно он окрашен в тёмно-синий цвет, чтобы его было легко идентифицировать.
Отходы
Отходы обычно отмечены красными трубами и отвечают за удаление отработанного газа вокруг станции через скрубберы. Эти трубы начинаются и заканчиваются в атмосе и огибают всю станцию. Основное назначение системы отходов – обеспечить удаление вредных газов из атмосферы станции. Скрубберы удалят газ из коридоров и вернут его в атмос, где он будет разделен газовыми фильтрами на различные камеры хранения. Вредные газы будут оседать в предназначенных для них камерах, а пригодный для дыхания воздух снова вернется в дистро и на станцию, чтобы продолжить цикл.
Камера смешивания
Камера смешивания представляет собой пустую зону хранения с собственной отдельной петлёй труб и насосов в атмосфере. Смесительная петля обычно отмечена коричневыми трубами, а камера хранения обычно находится рядом с внешним корпусом, отделённая от станции усиленными стенами и окнами. Рядом будет аварийная кнопка, чтобы разгерметизировать камеру, если вам нужно сбросить смесь в случае аварии или вы просто хотите опустошить камеру для новой смеси. Камера смешивания предназначена для экспериментов с различными смесями, соотношениями, температурами и давлениями при комбинировании газов.









